###### Understanding Armstrong Numbers

An Armstrong number (also known as a narcissistic number) is a number that is equal to the sum of its own digits raised to the power of the number of digits. For example, the number 153 is an Armstrong number because:
\[ 1^3 + 5^3 + 3^3 = 1 + 125 + 27 = 153 \]
###### Python Function to Check Armstrong Numbers

Below is a Python function that checks if a given number is an Armstrong number:
def is_armstrong_number(num):
# Convert the number to string to easily iterate over digits
digits = str(num)
# Calculate the number of digits
num_digits = len(digits)
# Calculate the sum of each digit raised to the power of num_digits
armstrong_sum = sum(int(digit) ** num_digits for digit in digits)
# Compare the sum with the original number
return armstrong_sum == num
# Example usage:
if **name** == "**main**":
number_to_check = 153
if is_armstrong_number(number_to_check):
print(f"{number_to_check} is an Armstrong number.")
else:
print(f"{number_to_check} is not an Armstrong number.")

###### How the Function Works

1. **Convert to String**: The function first converts the number into a string to facilitate the iteration over its digits.
2. **Count Digits**: It then counts the number of digits in the number, which is necessary for raising each digit to the appropriate power.
3. **Calculate Armstrong Sum**: Using a generator expression, the function computes the sum of each digit raised to the power of the number of digits.
4. **Comparison**: Finally, it checks if this sum is equal to the original number and returns the result.
###### Example

To determine if the number 370 is an Armstrong number:
result = is_armstrong_number(370)
print(result) # Output: True, since 3^3 + 7^3 + 0^3 = 370

In this implementation, the function efficiently checks any integer for the Armstrong property, making it a useful tool for mathematical explorations in Python.